Arrays sometimes contain invalid or missing data. When doing operations on such arrays, we wish to suppress invalid values, which is the purpose masked arrays fulfill (an example of typical use is given below).
For example, examine the following array:
>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
When we try to calculate the mean of the data, the result is undetermined:
>>> np.mean(x) nan
The mean is calculated using roughly np.sum(x)/len(x), but since any number added to NaN [1] produces NaN, this doesn't work. Enter masked arrays:
>>> m = np.ma.masked_array(x, np.isnan(x)) >>> m masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --], mask = [False False False True False False False True], fill_value=1e+20)
Here, we construct a masked array that suppress all NaN values. We may now proceed to calculate the mean of the other values:
>>> np.mean(m) 2.6666666666666665
[1] | Not-a-Number, a floating point value that is the result of an invalid operation. |
Module | bench |
Undocumented |
Module | core |
numpy.ma : a package to handle missing or invalid values. |
Module | extras |
Masked arrays add-ons. |
Module | mrecords |
numpy.ma..mrecords |
Module | setup |
Undocumented |
Package | tests |
No package docstring; 5/7 modules documented |
Module | testutils |
Miscellaneous functions for testing masked arrays and subclasses |
Module | timer​_comparison |
Undocumented |
From __init__.py
:
Variable | test |
Undocumented |