PostgreSQL supports sequences, and SQLAlchemy uses these as the default means of creating new primary key values for integer-based primary key columns. When creating tables, SQLAlchemy will issue the SERIAL datatype for integer-based primary key columns, which generates a sequence and server side default corresponding to the column.
To specify a specific named sequence to be used for primary key generation,
use the ~sqlalchemy.schema.Sequence
construct:
Table('sometable', metadata, Column('id', Integer, Sequence('some_id_seq'), primary_key=True) )
When SQLAlchemy issues a single INSERT statement, to fulfill the contract of
having the "last insert identifier" available, a RETURNING clause is added to
the INSERT statement which specifies the primary key columns should be
returned after the statement completes. The RETURNING functionality only takes
place if PostgreSQL 8.2 or later is in use. As a fallback approach, the
sequence, whether specified explicitly or implicitly via SERIAL, is
executed independently beforehand, the returned value to be used in the
subsequent insert. Note that when an
~sqlalchemy.sql.expression.insert()
construct is executed using
"executemany" semantics, the "last inserted identifier" functionality does not
apply; no RETURNING clause is emitted nor is the sequence pre-executed in this
case.
To force the usage of RETURNING by default off, specify the flag
implicit_returning=False to _sa.create_engine
.
PostgreSQL 10 and above have a new IDENTITY feature that supersedes the use
of SERIAL. The _schema.Identity
construct in a
_schema.Column
can be used to control its behavior:
from sqlalchemy import Table, Column, MetaData, Integer, Computed metadata = MetaData() data = Table( "data", metadata, Column( 'id', Integer, Identity(start=42, cycle=True), primary_key=True ), Column('data', String) )
The CREATE TABLE for the above _schema.Table
object would be:
CREATE TABLE data ( id INTEGER GENERATED BY DEFAULT AS IDENTITY (START WITH 42 CYCLE), data VARCHAR, PRIMARY KEY (id) )
_schema.Identity
construct
in a _schema.Column
to specify the option of an autoincrementing
column.Note
Previous versions of SQLAlchemy did not have built-in support for rendering of IDENTITY, and could use the following compilation hook to replace occurrences of SERIAL with IDENTITY:
from sqlalchemy.schema import CreateColumn from sqlalchemy.ext.compiler import compiles @compiles(CreateColumn, 'postgresql') def use_identity(element, compiler, **kw): text = compiler.visit_create_column(element, **kw) text = text.replace( "SERIAL", "INT GENERATED BY DEFAULT AS IDENTITY" ) return text
Using the above, a table such as:
t = Table( 't', m, Column('id', Integer, primary_key=True), Column('data', String) )
Will generate on the backing database as:
CREATE TABLE t ( id INT GENERATED BY DEFAULT AS IDENTITY, data VARCHAR, PRIMARY KEY (id) )
Server-side cursor support is available for the psycopg2, asyncpg dialects and may also be available in others.
Server side cursors are enabled on a per-statement basis by using the :paramref:`.Connection.execution_options.stream_results` connection execution option:
with engine.connect() as conn: result = conn.execution_options(stream_results=True).execute(text("select * from table"))
Note that some kinds of SQL statements may not be supported with server side cursors; generally, only SQL statements that return rows should be used with this option.
See Also
Most SQLAlchemy dialects support setting of transaction isolation level
using the :paramref:`_sa.create_engine.execution_options` parameter
at the _sa.create_engine
level, and at the _engine.Connection
level via the :paramref:`.Connection.execution_options.isolation_level`
parameter.
For PostgreSQL dialects, this feature works either by making use of the DBAPI-specific features, such as psycopg2's isolation level flags which will embed the isolation level setting inline with the "BEGIN" statement, or for DBAPIs with no direct support by emitting SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL <level> ahead of the "BEGIN" statement emitted by the DBAPI. For the special AUTOCOMMIT isolation level, DBAPI-specific techniques are used which is typically an .autocommit flag on the DBAPI connection object.
To set isolation level using _sa.create_engine
:
engine = create_engine( "postgresql+pg8000://scott:tiger@localhost/test", execution_options={ "isolation_level": "REPEATABLE READ" } )
To set using per-connection execution options:
with engine.connect() as conn: conn = conn.execution_options( isolation_level="REPEATABLE READ" ) with conn.begin(): # ... work with transaction
Valid values for isolation_level on most PostgreSQL dialects include:
Most PostgreSQL dialects support setting the "READ ONLY" and "DEFERRABLE"
characteristics of the transaction, which is in addition to the isolation level
setting. These two attributes can be established either in conjunction with or
independently of the isolation level by passing the postgresql_readonly and
postgresql_deferrable flags with
_engine.Connection.execution_options
. The example below illustrates
passing the "SERIALIZABLE" isolation level at the same time as setting
"READ ONLY" and "DEFERRABLE":
with engine.connect() as conn: conn = conn.execution_options( isolation_level="SERIALIZABLE", postgresql_readonly=True, postgresql_deferrable=True ) with conn.begin(): # ... work with transaction
Note that some DBAPIs such as asyncpg only support "readonly" with SERIALIZABLE isolation.
The PostgreSQL search_path variable refers to the list of schema names that will be implicitly referred towards when a particular table or other object is referenced in a SQL statement. As detailed in the next section :ref:`postgresql_schema_reflection`, SQLAlchemy is generally organized around the concept of keeping this variable at its default value of public, however, in order to have it set to any arbitrary name or names when connections are used automatically, the "SET SESSION search_path" command may be invoked for all connections in a pool using the following event handler, as discussed at :ref:`schema_set_default_connections`:
from sqlalchemy import event from sqlalchemy import create_engine engine = create_engine("postgresql+psycopg2://scott:tiger@host/dbname") @event.listens_for(engine, "connect", insert=True) def set_search_path(dbapi_connection, connection_record): existing_autocommit = dbapi_connection.autocommit dbapi_connection.autocommit = True cursor = dbapi_connection.cursor() cursor.execute("SET SESSION search_path='%s'" % schema_name) cursor.close() dbapi_connection.autocommit = existing_autocommit
The reason the recipe is complicated by use of the .autocommit DBAPI attribute is so that when the SET SESSION search_path directive is invoked, it is invoked outside of the scope of any transaction and therefore will not be reverted when the DBAPI connection has a rollback.
See Also
:ref:`schema_set_default_connections` - in the :ref:`metadata_toplevel` documentation
Section Best Practices Summarized
keep the search_path variable set to its default of public, without
any other schema names. For other schema names, name these explicitly
within _schema.Table
definitions. Alternatively, the
postgresql_ignore_search_path option will cause all reflected
_schema.Table
objects to have a _schema.Table.schema
attribute set up.
The PostgreSQL dialect can reflect tables from any schema, as outlined in :ref:`schema_table_reflection`.
With regards to tables which these _schema.Table
objects refer to via foreign key constraint, a decision must be made as to how
the .schema is represented in those remote tables, in the case where that
remote schema name is also a member of the current
PostgreSQL search path.
By default, the PostgreSQL dialect mimics the behavior encouraged by PostgreSQL's own pg_get_constraintdef() builtin procedure. This function returns a sample definition for a particular foreign key constraint, omitting the referenced schema name from that definition when the name is also in the PostgreSQL schema search path. The interaction below illustrates this behavior:
test=> CREATE TABLE test_schema.referred(id INTEGER PRIMARY KEY); CREATE TABLE test=> CREATE TABLE referring( test(> id INTEGER PRIMARY KEY, test(> referred_id INTEGER REFERENCES test_schema.referred(id)); CREATE TABLE test=> SET search_path TO public, test_schema; test=> SELECT pg_catalog.pg_get_constraintdef(r.oid, true) FROM test-> pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n test-> ON n.oid = c.relnamespace test-> JOIN pg_catalog.pg_constraint r ON c.oid = r.conrelid test-> WHERE c.relname='referring' AND r.contype = 'f' test-> ; pg_get_constraintdef --------------------------------------------------- FOREIGN KEY (referred_id) REFERENCES referred(id) (1 row)
Above, we created a table referred as a member of the remote schema test_schema, however when we added test_schema to the PG search_path and then asked pg_get_constraintdef() for the FOREIGN KEY syntax, test_schema was not included in the output of the function.
On the other hand, if we set the search path back to the typical default of public:
test=> SET search_path TO public; SET
The same query against pg_get_constraintdef() now returns the fully schema-qualified name for us:
test=> SELECT pg_catalog.pg_get_constraintdef(r.oid, true) FROM test-> pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n test-> ON n.oid = c.relnamespace test-> JOIN pg_catalog.pg_constraint r ON c.oid = r.conrelid test-> WHERE c.relname='referring' AND r.contype = 'f'; pg_get_constraintdef --------------------------------------------------------------- FOREIGN KEY (referred_id) REFERENCES test_schema.referred(id) (1 row)
SQLAlchemy will by default use the return value of pg_get_constraintdef() in order to determine the remote schema name. That is, if our search_path were set to include test_schema, and we invoked a table reflection process as follows:
>>> from sqlalchemy import Table, MetaData, create_engine, text >>> engine = create_engine("postgresql://scott:tiger@localhost/test") >>> with engine.connect() as conn: ... conn.execute(text("SET search_path TO test_schema, public")) ... metadata_obj = MetaData() ... referring = Table('referring', metadata_obj, ... autoload_with=conn) ... <sqlalchemy.engine.result.CursorResult object at 0x101612ed0>
The above process would deliver to the _schema.MetaData.tables
collection
referred table named without the schema:
>>> metadata_obj.tables['referred'].schema is None True
To alter the behavior of reflection such that the referred schema is
maintained regardless of the search_path setting, use the
postgresql_ignore_search_path option, which can be specified as a
dialect-specific argument to both _schema.Table
as well as
_schema.MetaData.reflect
:
>>> with engine.connect() as conn: ... conn.execute(text("SET search_path TO test_schema, public")) ... metadata_obj = MetaData() ... referring = Table('referring', metadata_obj, ... autoload_with=conn, ... postgresql_ignore_search_path=True) ... <sqlalchemy.engine.result.CursorResult object at 0x1016126d0>
We will now have test_schema.referred stored as schema-qualified:
>>> metadata_obj.tables['test_schema.referred'].schema 'test_schema'
Note that in all cases, the "default" schema is always reflected as None. The "default" schema on PostgreSQL is that which is returned by the PostgreSQL current_schema() function. On a typical PostgreSQL installation, this is the name public. So a table that refers to another which is in the public (i.e. default) schema will always have the .schema attribute set to None.
See Also
:ref:`reflection_schema_qualified_interaction` - discussion of the issue from a backend-agnostic perspective
The Schema Search Path - on the PostgreSQL website.
The dialect supports PG 8.2's INSERT..RETURNING, UPDATE..RETURNING and
DELETE..RETURNING syntaxes. INSERT..RETURNING is used by default
for single-row INSERT statements in order to fetch newly generated
primary key identifiers. To specify an explicit RETURNING clause,
use the ._UpdateBase.returning
method on a per-statement basis:
# INSERT..RETURNING result = table.insert().returning(table.c.col1, table.c.col2).\ values(name='foo') print(result.fetchall()) # UPDATE..RETURNING result = table.update().returning(table.c.col1, table.c.col2).\ where(table.c.name=='foo').values(name='bar') print(result.fetchall()) # DELETE..RETURNING result = table.delete().returning(table.c.col1, table.c.col2).\ where(table.c.name=='foo') print(result.fetchall())
Starting with version 9.5, PostgreSQL allows "upserts" (update or insert) of rows into a table via the ON CONFLICT clause of the INSERT statement. A candidate row will only be inserted if that row does not violate any unique constraints. In the case of a unique constraint violation, a secondary action can occur which can be either "DO UPDATE", indicating that the data in the target row should be updated, or "DO NOTHING", which indicates to silently skip this row.
Conflicts are determined using existing unique constraints and indexes. These constraints may be identified either using their name as stated in DDL, or they may be inferred by stating the columns and conditions that comprise the indexes.
SQLAlchemy provides ON CONFLICT support via the PostgreSQL-specific
_postgresql.insert()
function, which provides
the generative methods _postgresql.Insert.on_conflict_do_update
and ~.postgresql.Insert.on_conflict_do_nothing
:
>>> from sqlalchemy.dialects.postgresql import insert >>> insert_stmt = insert(my_table).values( ... id='some_existing_id', ... data='inserted value') >>> do_nothing_stmt = insert_stmt.on_conflict_do_nothing( ... index_elements=['id'] ... ) >>> print(do_nothing_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT (id) DO NOTHING {stop} >>> do_update_stmt = insert_stmt.on_conflict_do_update( ... constraint='pk_my_table', ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT ON CONSTRAINT pk_my_table DO UPDATE SET data = %(param_1)s
See Also
INSERT .. ON CONFLICT - in the PostgreSQL documentation.
Both methods supply the "target" of the conflict using either the named constraint or by column inference:
The :paramref:`_postgresql.Insert.on_conflict_do_update.index_elements` argument
specifies a sequence containing string column names, _schema.Column
objects, and/or SQL expression elements, which would identify a unique
index:
>>> do_update_stmt = insert_stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT (id) DO UPDATE SET data = %(param_1)s {stop} >>> do_update_stmt = insert_stmt.on_conflict_do_update( ... index_elements=[my_table.c.id], ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT (id) DO UPDATE SET data = %(param_1)s
When using :paramref:`_postgresql.Insert.on_conflict_do_update.index_elements` to infer an index, a partial index can be inferred by also specifying the use the :paramref:`_postgresql.Insert.on_conflict_do_update.index_where` parameter:
>>> stmt = insert(my_table).values(user_email='a@b.com', data='inserted data') >>> stmt = stmt.on_conflict_do_update( ... index_elements=[my_table.c.user_email], ... index_where=my_table.c.user_email.like('%@gmail.com'), ... set_=dict(data=stmt.excluded.data) ... ) >>> print(stmt) {opensql}INSERT INTO my_table (data, user_email) VALUES (%(data)s, %(user_email)s) ON CONFLICT (user_email) WHERE user_email LIKE %(user_email_1)s DO UPDATE SET data = excluded.data
The :paramref:`_postgresql.Insert.on_conflict_do_update.constraint` argument is used to specify an index directly rather than inferring it. This can be the name of a UNIQUE constraint, a PRIMARY KEY constraint, or an INDEX:
>>> do_update_stmt = insert_stmt.on_conflict_do_update( ... constraint='my_table_idx_1', ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT ON CONSTRAINT my_table_idx_1 DO UPDATE SET data = %(param_1)s {stop} >>> do_update_stmt = insert_stmt.on_conflict_do_update( ... constraint='my_table_pk', ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT ON CONSTRAINT my_table_pk DO UPDATE SET data = %(param_1)s {stop}
The :paramref:`_postgresql.Insert.on_conflict_do_update.constraint` argument may
also refer to a SQLAlchemy construct representing a constraint,
e.g. .UniqueConstraint
, .PrimaryKeyConstraint
,
.Index
, or .ExcludeConstraint
. In this use,
if the constraint has a name, it is used directly. Otherwise, if the
constraint is unnamed, then inference will be used, where the expressions
and optional WHERE clause of the constraint will be spelled out in the
construct. This use is especially convenient
to refer to the named or unnamed primary key of a _schema.Table
using the
_schema.Table.primary_key
attribute:
>>> do_update_stmt = insert_stmt.on_conflict_do_update( ... constraint=my_table.primary_key, ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT (id) DO UPDATE SET data = %(param_1)s
ON CONFLICT...DO UPDATE is used to perform an update of the already existing row, using any combination of new values as well as values from the proposed insertion. These values are specified using the :paramref:`_postgresql.Insert.on_conflict_do_update.set_` parameter. This parameter accepts a dictionary which consists of direct values for UPDATE:
>>> stmt = insert(my_table).values(id='some_id', data='inserted value') >>> do_update_stmt = stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value') ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT (id) DO UPDATE SET data = %(param_1)s
Warning
The _expression.Insert.on_conflict_do_update
method does not take into
account Python-side default UPDATE values or generation functions, e.g.
those specified using :paramref:`_schema.Column.onupdate`.
These values will not be exercised for an ON CONFLICT style of UPDATE,
unless they are manually specified in the
:paramref:`_postgresql.Insert.on_conflict_do_update.set_` dictionary.
In order to refer to the proposed insertion row, the special alias
~.postgresql.Insert.excluded
is available as an attribute on
the _postgresql.Insert
object; this object is a
_expression.ColumnCollection
which alias contains all columns of the target
table:
>>> stmt = insert(my_table).values( ... id='some_id', ... data='inserted value', ... author='jlh' ... ) >>> do_update_stmt = stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value', author=stmt.excluded.author) ... ) >>> print(do_update_stmt) {opensql}INSERT INTO my_table (id, data, author) VALUES (%(id)s, %(data)s, %(author)s) ON CONFLICT (id) DO UPDATE SET data = %(param_1)s, author = excluded.author
The _expression.Insert.on_conflict_do_update
method also accepts
a WHERE clause using the :paramref:`_postgresql.Insert.on_conflict_do_update.where`
parameter, which will limit those rows which receive an UPDATE:
>>> stmt = insert(my_table).values( ... id='some_id', ... data='inserted value', ... author='jlh' ... ) >>> on_update_stmt = stmt.on_conflict_do_update( ... index_elements=['id'], ... set_=dict(data='updated value', author=stmt.excluded.author), ... where=(my_table.c.status == 2) ... ) >>> print(on_update_stmt) {opensql}INSERT INTO my_table (id, data, author) VALUES (%(id)s, %(data)s, %(author)s) ON CONFLICT (id) DO UPDATE SET data = %(param_1)s, author = excluded.author WHERE my_table.status = %(status_1)s
ON CONFLICT may be used to skip inserting a row entirely
if any conflict with a unique or exclusion constraint occurs; below
this is illustrated using the
~.postgresql.Insert.on_conflict_do_nothing
method:
>>> stmt = insert(my_table).values(id='some_id', data='inserted value') >>> stmt = stmt.on_conflict_do_nothing(index_elements=['id']) >>> print(stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT (id) DO NOTHING
If DO NOTHING is used without specifying any columns or constraint, it has the effect of skipping the INSERT for any unique or exclusion constraint violation which occurs:
>>> stmt = insert(my_table).values(id='some_id', data='inserted value') >>> stmt = stmt.on_conflict_do_nothing() >>> print(stmt) {opensql}INSERT INTO my_table (id, data) VALUES (%(id)s, %(data)s) ON CONFLICT DO NOTHING
SQLAlchemy makes available the PostgreSQL @@ operator via the
_expression.ColumnElement.match
method on any textual column expression.
On the PostgreSQL dialect, an expression like the following:
select(sometable.c.text.match("search string"))
will emit to the database:
SELECT text @@ to_tsquery('search string') FROM table
Various other PostgreSQL text search functions such as to_tsquery(),
to_tsvector(), and plainto_tsquery() are available by explicitly using
the standard SQLAlchemy .func
construct.
For example:
select(func.to_tsvector('fat cats ate rats').match('cat & rat'))
Emits the equivalent of:
SELECT to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat')
The _postgresql.TSVECTOR
type can provide for explicit CAST:
from sqlalchemy.dialects.postgresql import TSVECTOR from sqlalchemy import select, cast select(cast("some text", TSVECTOR))
produces a statement equivalent to:
SELECT CAST('some text' AS TSVECTOR) AS anon_1
Tip
It's important to remember that text searching in PostgreSQL is powerful but complicated, and SQLAlchemy users are advised to reference the PostgreSQL documentation regarding Full Text Search.
There are important differences between to_tsquery and plainto_tsquery, the most significant of which is that to_tsquery expects specially formatted "querytext" that is written to PostgreSQL's own specification, while plainto_tsquery expects unformatted text that is transformed into to_tsquery compatible querytext. This means the input to .match() under PostgreSQL may be incompatible with the input to .match() under another database backend. SQLAlchemy users who support multiple backends are advised to carefully implement their usage of .match() to work around these constraints.
Full Text Searches in PostgreSQL are influenced by a combination of: the PostgreSQL setting of default_text_search_config, the regconfig used to build the GIN/GiST indexes, and the regconfig optionally passed in during a query.
When performing a Full Text Search against a column that has a GIN or GiST index that is already pre-computed (which is common on full text searches) one may need to explicitly pass in a particular PostgreSQL regconfig value to ensure the query-planner utilizes the index and does not re-compute the column on demand.
In order to provide for this explicit query planning, or to use different search strategies, the match method accepts a postgresql_regconfig keyword argument:
select(mytable.c.id).where( mytable.c.title.match('somestring', postgresql_regconfig='english') )
Emits the equivalent of:
SELECT mytable.id FROM mytable WHERE mytable.title @@ to_tsquery('english', 'somestring')
One can also specifically pass in a 'regconfig'
value to the
to_tsvector() command as the initial argument:
select(mytable.c.id).where( func.to_tsvector('english', mytable.c.title )\ .match('somestring', postgresql_regconfig='english') )
produces a statement equivalent to:
SELECT mytable.id FROM mytable WHERE to_tsvector('english', mytable.title) @@ to_tsquery('english', 'somestring')
It is recommended that you use the EXPLAIN ANALYZE... tool from PostgreSQL to ensure that you are generating queries with SQLAlchemy that take full advantage of any indexes you may have created for full text search.
The dialect supports PostgreSQL's ONLY keyword for targeting only a particular table in an inheritance hierarchy. This can be used to produce the SELECT ... FROM ONLY, UPDATE ONLY ..., and DELETE FROM ONLY ... syntaxes. It uses SQLAlchemy's hints mechanism:
# SELECT ... FROM ONLY ... result = table.select().with_hint(table, 'ONLY', 'postgresql') print(result.fetchall()) # UPDATE ONLY ... table.update(values=dict(foo='bar')).with_hint('ONLY', dialect_name='postgresql') # DELETE FROM ONLY ... table.delete().with_hint('ONLY', dialect_name='postgresql')
Several extensions to the .Index
construct are available, specific
to the PostgreSQL dialect.
The postgresql_include option renders INCLUDE(colname) for the given string names:
Index("my_index", table.c.x, postgresql_include=['y'])
would render the index as CREATE INDEX my_index ON table (x) INCLUDE (y)
Note that this feature requires PostgreSQL 11 or later.
Partial indexes add criterion to the index definition so that the index is
applied to a subset of rows. These can be specified on .Index
using the postgresql_where keyword argument:
Index('my_index', my_table.c.id, postgresql_where=my_table.c.value > 10)
PostgreSQL allows the specification of an operator class for each column of
an index (see
https://www.postgresql.org/docs/8.3/interactive/indexes-opclass.html).
The .Index
construct allows these to be specified via the
postgresql_ops keyword argument:
Index( 'my_index', my_table.c.id, my_table.c.data, postgresql_ops={ 'data': 'text_pattern_ops', 'id': 'int4_ops' })
Note that the keys in the postgresql_ops dictionaries are the
"key" name of the _schema.Column
, i.e. the name used to access it from
the .c collection of _schema.Table
, which can be configured to be
different than the actual name of the column as expressed in the database.
If postgresql_ops is to be used against a complex SQL expression such as a function call, then to apply to the column it must be given a label that is identified in the dictionary by name, e.g.:
Index( 'my_index', my_table.c.id, func.lower(my_table.c.data).label('data_lower'), postgresql_ops={ 'data_lower': 'text_pattern_ops', 'id': 'int4_ops' })
Operator classes are also supported by the
_postgresql.ExcludeConstraint
construct using the
:paramref:`_postgresql.ExcludeConstraint.ops` parameter. See that parameter for
details.
_postgresql.ExcludeConstraint
.PostgreSQL provides several index types: B-Tree, Hash, GiST, and GIN, as well
as the ability for users to create their own (see
https://www.postgresql.org/docs/8.3/static/indexes-types.html). These can be
specified on .Index
using the postgresql_using keyword argument:
Index('my_index', my_table.c.data, postgresql_using='gin')
The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX command, so it must be a valid index type for your version of PostgreSQL.
PostgreSQL allows storage parameters to be set on indexes. The storage
parameters available depend on the index method used by the index. Storage
parameters can be specified on .Index
using the postgresql_with
keyword argument:
Index('my_index', my_table.c.data, postgresql_with={"fillfactor": 50})
PostgreSQL allows to define the tablespace in which to create the index.
The tablespace can be specified on .Index
using the
postgresql_tablespace keyword argument:
Index('my_index', my_table.c.data, postgresql_tablespace='my_tablespace')
Note that the same option is available on _schema.Table
as well.
The PostgreSQL index option CONCURRENTLY is supported by passing the
flag postgresql_concurrently to the .Index
construct:
tbl = Table('testtbl', m, Column('data', Integer)) idx1 = Index('test_idx1', tbl.c.data, postgresql_concurrently=True)
The above index construct will render DDL for CREATE INDEX, assuming PostgreSQL 8.2 or higher is detected or for a connection-less dialect, as:
CREATE INDEX CONCURRENTLY test_idx1 ON testtbl (data)
For DROP INDEX, assuming PostgreSQL 9.2 or higher is detected or for a connection-less dialect, it will emit:
DROP INDEX CONCURRENTLY test_idx1
When using CONCURRENTLY, the PostgreSQL database requires that the statement be invoked outside of a transaction block. The Python DBAPI enforces that even for a single statement, a transaction is present, so to use this construct, the DBAPI's "autocommit" mode must be used:
metadata = MetaData() table = Table( "foo", metadata, Column("id", String)) index = Index( "foo_idx", table.c.id, postgresql_concurrently=True) with engine.connect() as conn: with conn.execution_options(isolation_level='AUTOCOMMIT'): table.create(conn)
See Also
The PostgreSQL database creates a UNIQUE INDEX implicitly whenever the
UNIQUE CONSTRAINT construct is used. When inspecting a table using
_reflection.Inspector
, the _reflection.Inspector.get_indexes
and the _reflection.Inspector.get_unique_constraints
will report on these
two constructs distinctly; in the case of the index, the key
duplicates_constraint will be present in the index entry if it is
detected as mirroring a constraint. When performing reflection using
Table(..., autoload_with=engine), the UNIQUE INDEX is not returned
in _schema.Table.indexes
when it is detected as mirroring a
.UniqueConstraint
in the _schema.Table.constraints
collection
.
_schema.Table
reflection now includes
.UniqueConstraint
objects present in the
_schema.Table.constraints
collection; the PostgreSQL backend will no longer include a "mirrored"
.Index
construct in _schema.Table.indexes
if it is detected
as corresponding to a unique constraint.The _reflection.Inspector
used for the PostgreSQL backend is an instance
of .PGInspector
, which offers additional methods:
from sqlalchemy import create_engine, inspect engine = create_engine("postgresql+psycopg2://localhost/test") insp = inspect(engine) # will be a PGInspector print(insp.get_enums())
Several options for CREATE TABLE are supported directly by the PostgreSQL
dialect in conjunction with the _schema.Table
construct:
TABLESPACE:
Table("some_table", metadata, ..., postgresql_tablespace='some_tablespace')
The above option is also available on the .Index
construct.
ON COMMIT:
Table("some_table", metadata, ..., postgresql_on_commit='PRESERVE ROWS')
WITH OIDS:
Table("some_table", metadata, ..., postgresql_with_oids=True)
WITHOUT OIDS:
Table("some_table", metadata, ..., postgresql_with_oids=False)
INHERITS:
Table("some_table", metadata, ..., postgresql_inherits="some_supertable") Table("some_table", metadata, ..., postgresql_inherits=("t1", "t2", ...)) .. versionadded:: 1.0.0
PARTITION BY:
Table("some_table", metadata, ..., postgresql_partition_by='LIST (part_column)') .. versionadded:: 1.2.6
See Also
PostgreSQL makes great use of modern SQL forms such as table-valued functions, tables and rows as values. These constructs are commonly used as part of PostgreSQL's support for complex datatypes such as JSON, ARRAY, and other datatypes. SQLAlchemy's SQL expression language has native support for most table-valued and row-valued forms.
Many PostgreSQL built-in functions are intended to be used in the FROM clause
of a SELECT statement, and are capable of returning table rows or sets of table
rows. A large portion of PostgreSQL's JSON functions for example such as
json_array_elements(), json_object_keys(), json_each_text(),
json_each(), json_to_record(), json_populate_recordset() use such
forms. These classes of SQL function calling forms in SQLAlchemy are available
using the _functions.FunctionElement.table_valued
method in conjunction
with _functions.Function
objects generated from the _sql.func
namespace.
Examples from PostgreSQL's reference documentation follow below:
json_each():
>>> from sqlalchemy import select, func >>> stmt = select(func.json_each('{"a":"foo", "b":"bar"}').table_valued("key", "value")) >>> print(stmt) SELECT anon_1.key, anon_1.value FROM json_each(:json_each_1) AS anon_1
json_populate_record():
>>> from sqlalchemy import select, func, literal_column >>> stmt = select( ... func.json_populate_record( ... literal_column("null::myrowtype"), ... '{"a":1,"b":2}' ... ).table_valued("a", "b", name="x") ... ) >>> print(stmt) SELECT x.a, x.b FROM json_populate_record(null::myrowtype, :json_populate_record_1) AS x
json_to_record() - this form uses a PostgreSQL specific form of derived
columns in the alias, where we may make use of _sql.column
elements with
types to produce them. The _functions.FunctionElement.table_valued
method produces a _sql.TableValuedAlias
construct, and the method
_sql.TableValuedAlias.render_derived
method sets up the derived
columns specification:
>>> from sqlalchemy import select, func, column, Integer, Text >>> stmt = select( ... func.json_to_record('{"a":1,"b":[1,2,3],"c":"bar"}').table_valued( ... column("a", Integer), column("b", Text), column("d", Text), ... ).render_derived(name="x", with_types=True) ... ) >>> print(stmt) SELECT x.a, x.b, x.d FROM json_to_record(:json_to_record_1) AS x(a INTEGER, b TEXT, d TEXT)
WITH ORDINALITY - part of the SQL standard, WITH ORDINALITY adds an
ordinal counter to the output of a function and is accepted by a limited set
of PostgreSQL functions including unnest() and generate_series(). The
_functions.FunctionElement.table_valued
method accepts a keyword
parameter with_ordinality for this purpose, which accepts the string name
that will be applied to the "ordinality" column:
>>> from sqlalchemy import select, func >>> stmt = select( ... func.generate_series(4, 1, -1).table_valued("value", with_ordinality="ordinality") ... ) >>> print(stmt) SELECT anon_1.value, anon_1.ordinality FROM generate_series(:generate_series_1, :generate_series_2, :generate_series_3) WITH ORDINALITY AS anon_1
See Also
:ref:`tutorial_functions_table_valued` - in the :ref:`unified_tutorial`
Similar to the table valued function, a column valued function is present
in the FROM clause, but delivers itself to the columns clause as a single
scalar value. PostgreSQL functions such as json_array_elements(),
unnest() and generate_series() may use this form. Column valued functions are available using the
_functions.FunctionElement.column_valued
method of _functions.FunctionElement
:
json_array_elements():
>>> from sqlalchemy import select, func >>> stmt = select(func.json_array_elements('["one", "two"]').column_valued("x")) >>> print(stmt) SELECT x FROM json_array_elements(:json_array_elements_1) AS x
unnest() - in order to generate a PostgreSQL ARRAY literal, the
_postgresql.array
construct may be used:
>>> from sqlalchemy.dialects.postgresql import array >>> from sqlalchemy import select, func >>> stmt = select(func.unnest(array([1, 2])).column_valued()) >>> print(stmt) SELECT anon_1 FROM unnest(ARRAY[%(param_1)s, %(param_2)s]) AS anon_1
The function can of course be used against an existing table-bound column
that's of type _types.ARRAY
:
>>> from sqlalchemy import table, column, ARRAY, Integer >>> from sqlalchemy import select, func >>> t = table("t", column('value', ARRAY(Integer))) >>> stmt = select(func.unnest(t.c.value).column_valued("unnested_value")) >>> print(stmt) SELECT unnested_value FROM unnest(t.value) AS unnested_value
See Also
:ref:`tutorial_functions_column_valued` - in the :ref:`unified_tutorial`
Built-in support for rendering a ROW may be approximated using
func.ROW with the _sa.func
namespace, or by using the
_sql.tuple_
construct:
>>> from sqlalchemy import table, column, func, tuple_ >>> t = table("t", column("id"), column("fk")) >>> stmt = t.select().where( ... tuple_(t.c.id, t.c.fk) > (1,2) ... ).where( ... func.ROW(t.c.id, t.c.fk) < func.ROW(3, 7) ... ) >>> print(stmt) SELECT t.id, t.fk FROM t WHERE (t.id, t.fk) > (:param_1, :param_2) AND ROW(t.id, t.fk) < ROW(:ROW_1, :ROW_2)
PostgreSQL supports passing a table as an argument to a function, which it
refers towards as a "record" type. SQLAlchemy _sql.FromClause
objects
such as _schema.Table
support this special form using the
_sql.FromClause.table_valued
method, which is comparable to the
_functions.FunctionElement.table_valued
method except that the collection
of columns is already established by that of the _sql.FromClause
itself:
>>> from sqlalchemy import table, column, func, select >>> a = table( "a", column("id"), column("x"), column("y")) >>> stmt = select(func.row_to_json(a.table_valued())) >>> print(stmt) SELECT row_to_json(a) AS row_to_json_1 FROM a
The PostgreSQL dialect supports arrays, both as multidimensional column types as well as array literals:
_postgresql.ARRAY
- ARRAY datatype_postgresql.array
- array literal_postgresql.array_agg
- ARRAY_AGG SQL function_postgresql.aggregate_order_by
- helper for PG's ORDER BY aggregate
function syntax.The PostgreSQL dialect supports both JSON and JSONB datatypes, including psycopg2's native support and support for all of PostgreSQL's special operators:
_postgresql.JSON
_postgresql.JSONB
The PostgreSQL HSTORE type as well as hstore literals are supported:
_postgresql.HSTORE
- HSTORE datatype_postgresql.hstore
- hstore literalPostgreSQL has an independently creatable TYPE structure which is used to implement an enumerated type. This approach introduces significant complexity on the SQLAlchemy side in terms of when this type should be CREATED and DROPPED. The type object is also an independently reflectable entity. The following sections should be consulted:
_postgresql.ENUM
- DDL and typing support for ENUM..PGInspector.get_enums
- retrieve a listing of current ENUM types.postgresql.ENUM.create
, .postgresql.ENUM.drop
- individual
CREATE and DROP commands for ENUM.The combination of ENUM and ARRAY is not directly supported by backend DBAPIs at this time. Prior to SQLAlchemy 1.3.17, a special workaround was needed in order to allow this combination to work, described below.
from sqlalchemy import TypeDecorator from sqlalchemy.dialects.postgresql import ARRAY class ArrayOfEnum(TypeDecorator): impl = ARRAY def bind_expression(self, bindvalue): return sa.cast(bindvalue, self) def result_processor(self, dialect, coltype): super_rp = super(ArrayOfEnum, self).result_processor( dialect, coltype) def handle_raw_string(value): inner = re.match(r"^{(.*)}$", value).group(1) return inner.split(",") if inner else [] def process(value): if value is None: return None return super_rp(handle_raw_string(value)) return process
E.g.:
Table( 'mydata', metadata, Column('id', Integer, primary_key=True), Column('data', ArrayOfEnum(ENUM('a', 'b, 'c', name='myenum'))) )
This type is not included as a built-in type as it would be incompatible with a DBAPI that suddenly decides to support ARRAY of ENUM directly in a new version.
Similar to using ENUM, prior to SQLAlchemy 1.3.17, for an ARRAY of JSON/JSONB we need to render the appropriate CAST. Current psycopg2 drivers accommodate the result set correctly without any special steps.
class CastingArray(ARRAY): def bind_expression(self, bindvalue): return sa.cast(bindvalue, self)
E.g.:
Table( 'mydata', metadata, Column('id', Integer, primary_key=True), Column('data', CastingArray(JSONB)) )
Constant | AUTOCOMMIT_REGEXP |
Undocumented |
Constant | IDX_USING |
Undocumented |
Constant | RESERVED_WORDS |
Undocumented |
Variable | colspecs |
Undocumented |
Variable | ischema_names |
Undocumented |
Class | _ColonCast |
Undocumented |
Class | PGCompiler |
No class docstring; 1/29 method documented |
Class | PGDDLCompiler |
Undocumented |
Class | PGDeferrableConnectionCharacteristic |
Undocumented |
Class | PGDialect |
No class docstring; 0/12 instance variable, 0/20 class variable, 1/38 method documented |
Class | PGExecutionContext |
Undocumented |
Class | PGIdentifierPreparer |
Undocumented |
Class | PGInspector |
No class docstring; 4/4 methods documented |
Class | PGReadOnlyConnectionCharacteristic |
Undocumented |
Class | PGTypeCompiler |
Undocumented |
Constant | _DECIMAL_TYPES |
Undocumented |
Constant | _FLOAT_TYPES |
Undocumented |
Constant | _INT_TYPES |
Undocumented |