Undocumented
Variable | array_function_dispatch |
Undocumented |
Function | _add_docstring |
Undocumented |
Function | _geomspace_dispatcher |
Undocumented |
Function | _linspace_dispatcher |
Undocumented |
Function | _logspace_dispatcher |
Undocumented |
Function | _needs_add_docstring |
Returns true if the only way to set the docstring of obj from python is via add_docstring. |
Function | geomspace |
Return numbers spaced evenly on a log scale (a geometric progression). |
Function | linspace |
Return evenly spaced numbers over a specified interval. |
Function | logspace |
Return numbers spaced evenly on a log scale. |
Undocumented
Undocumented
Undocumented
Returns true if the only way to set the docstring of obj
from python is
via add_docstring.
This function errs on the side of being overly conservative.
Return numbers spaced evenly on a log scale (a geometric progression).
This is similar to logspace
, but with endpoints specified directly.
Each output sample is a constant multiple of the previous.
start
and stop
are now supported.endpoint
is False.
In that case, num + 1 values are spaced over the
interval in log-space, of which all but the last (a sequence of
length num
) are returned.stop
is the last sample. Otherwise, it is not included.
Default is True.dtype
is not given, the data type
is inferred from start
and stop
. The inferred dtype will never be
an integer; float
is chosen even if the arguments would produce an
array of integers.The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
num
samples, equally spaced on a log scale.If the inputs or dtype are complex, the output will follow a logarithmic spiral in the complex plane. (There are an infinite number of spirals passing through two points; the output will follow the shortest such path.)
>>> np.geomspace(1, 1000, num=4) array([ 1., 10., 100., 1000.]) >>> np.geomspace(1, 1000, num=3, endpoint=False) array([ 1., 10., 100.]) >>> np.geomspace(1, 1000, num=4, endpoint=False) array([ 1. , 5.62341325, 31.6227766 , 177.827941 ]) >>> np.geomspace(1, 256, num=9) array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
Note that the above may not produce exact integers:
>>> np.geomspace(1, 256, num=9, dtype=int) array([ 1, 2, 4, 7, 16, 32, 63, 127, 256]) >>> np.around(np.geomspace(1, 256, num=9)).astype(int) array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
Negative, decreasing, and complex inputs are allowed:
>>> np.geomspace(1000, 1, num=4) array([1000., 100., 10., 1.]) >>> np.geomspace(-1000, -1, num=4) array([-1000., -100., -10., -1.]) >>> np.geomspace(1j, 1000j, num=4) # Straight line array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j]) >>> np.geomspace(-1+0j, 1+0j, num=5) # Circle array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j, 6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j, 1.00000000e+00+0.00000000e+00j])
Graphical illustration of endpoint
parameter:
>>> import matplotlib.pyplot as plt >>> N = 10 >>> y = np.zeros(N) >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.axis([0.5, 2000, 0, 3]) [0.5, 2000, 0, 3] >>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both') >>> plt.show()
Return evenly spaced numbers over a specified interval.
Returns num
evenly spaced samples, calculated over the
interval [start
, stop
].
The endpoint of the interval can optionally be excluded.
start
and stop
are now supported.endpoint
is set to False.
In that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop
is excluded. Note that the step
size changes when endpoint
is False.stop
is the last sample. Otherwise, it is not included.
Default is True.samples
, step
), where step
is the spacing
between samples.The type of the output array. If dtype
is not given, the data type
is inferred from start
and stop
. The inferred dtype will never be
an integer; float
is chosen even if the arguments would produce an
array of integers.
The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
num
equally spaced samples in the closed interval
[start, stop] or the half-open interval [start, stop)
(depending on whether endpoint
is True or False).Only returned if retstep
is True
Size of spacing between samples.
>>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()
Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at base ** start
(base
to the power of start
) and ends with base ** stop
(see endpoint
below).
start
and stop
are now supported.endpoint
is False. In that case, num + 1 values are spaced over the
interval in log-space, of which all but the last (a sequence of
length num
) are returned.stop
is the last sample. Otherwise, it is not included.
Default is True.dtype
is not given, the data type
is inferred from start
and stop
. The inferred type will never be
an integer; float
is chosen even if the arguments would produce an
array of integers.The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
num
samples, equally spaced on a log scale.geomspace : Similar to logspace, but with endpoints specified directly.
Logspace is equivalent to the code
>>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y).astype(dtype) ... # doctest: +SKIP
>>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([4. , 5.0396842 , 6.34960421, 8. ])
Graphical illustration:
>>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()