Variable | integer_types |
Undocumented |
Function | _fftshift_dispatcher |
Undocumented |
Function | fftfreq |
Return the Discrete Fourier Transform sample frequencies. |
Function | fftshift |
Shift the zero-frequency component to the center of the spectrum. |
Function | ifftshift |
The inverse of fftshift . Although identical for even-length x , the functions differ by one sample for odd-length x . |
Function | rfftfreq |
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft). |
Return the Discrete Fourier Transform sample frequencies.
The returned float array f
contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length n
and a sample spacing d
:
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
n
containing the sample frequencies.>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) >>> fourier = np.fft.fft(signal) >>> n = signal.size >>> timestep = 0.1 >>> freq = np.fft.fftfreq(n, d=timestep) >>> freq array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component only if len(x) is even.
ifftshift : The inverse of fftshift
.
>>> freqs = np.fft.fftfreq(10, 0.1) >>> freqs array([ 0., 1., 2., ..., -3., -2., -1.]) >>> np.fft.fftshift(freqs) array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) >>> freqs array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) >>> np.fft.fftshift(freqs, axes=(1,)) array([[ 2., 0., 1.], [-4., 3., 4.], [-1., -3., -2.]])
The inverse of fftshift
. Although identical for even-length x
, the
functions differ by one sample for odd-length x
.
fftshift : Shift zero-frequency component to the center of the spectrum.
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) >>> freqs array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) >>> np.fft.ifftshift(np.fft.fftshift(freqs)) array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]])
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
The returned float array f
contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length n
and a sample spacing d
:
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
Unlike fftfreq
(but like scipy.fftpack.rfftfreq
)
the Nyquist frequency component is considered to be positive.
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) >>> fourier = np.fft.rfft(signal) >>> n = signal.size >>> sample_rate = 100 >>> freq = np.fft.fftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., ..., -30., -20., -10.]) >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., 50.])