module documentation

Set operations for arrays based on sorting.

Notes

For floating point arrays, inaccurate results may appear due to usual round-off and floating point comparison issues.

Speed could be gained in some operations by an implementation of numpy.sort, that can provide directly the permutation vectors, thus avoiding calls to numpy.argsort.

Original author: Robert Cimrman

Variable array​_function​_dispatch Undocumented
Function ​_ediff1d​_dispatcher Undocumented
Function ​_in1d​_dispatcher Undocumented
Function ​_intersect1d​_dispatcher Undocumented
Function ​_isin​_dispatcher Undocumented
Function ​_setdiff1d​_dispatcher Undocumented
Function ​_setxor1d​_dispatcher Undocumented
Function ​_union1d​_dispatcher Undocumented
Function ​_unique1d Find the unique elements of an array, ignoring shape.
Function ​_unique​_dispatcher Undocumented
Function ​_unpack​_tuple Unpacks one-element tuples for use as return values
Function ediff1d The differences between consecutive elements of an array.
Function in1d Test whether each element of a 1-D array is also present in a second array.
Function intersect1d Find the intersection of two arrays.
Function isin Calculates element in test_elements, broadcasting over element only. Returns a boolean array of the same shape as element that is True where an element of element is in test_elements and False otherwise.
Function setdiff1d Find the set difference of two arrays.
Function setxor1d Find the set exclusive-or of two arrays.
Function union1d Find the union of two arrays.
Function unique Find the unique elements of an array.
array_function_dispatch =

Undocumented

def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):

Undocumented

def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None):

Undocumented

def _intersect1d_dispatcher(ar1, ar2, assume_unique=None, return_indices=None):

Undocumented

def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None):

Undocumented

def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):

Undocumented

def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):

Undocumented

def _union1d_dispatcher(ar1, ar2):

Undocumented

def _unique1d(ar, return_index=False, return_inverse=False, return_counts=False):
Find the unique elements of an array, ignoring shape.
def _unique_dispatcher(ar, return_index=None, return_inverse=None, return_counts=None, axis=None):

Undocumented

def _unpack_tuple(x):
Unpacks one-element tuples for use as return values
@array_function_dispatch(_ediff1d_dispatcher)
def ediff1d(ary, to_end=None, to_begin=None):

The differences between consecutive elements of an array.

Parameters

ary : array_like
If necessary, will be flattened before the differences are taken.
to_end : array_like, optional
Number(s) to append at the end of the returned differences.
to_begin : array_like, optional
Number(s) to prepend at the beginning of the returned differences.

Returns

ediff1d : ndarray
The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].

See Also

diff, gradient

Notes

When applied to masked arrays, this function drops the mask information if the to_begin and/or to_end parameters are used.

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([ 1,  2,  3, -7])
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99,   1,   2, ...,  -7,  88,  99])

The returned array is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([ 1,  2, -3,  5, 18])
@array_function_dispatch(_in1d_dispatcher)
def in1d(ar1, ar2, assume_unique=False, invert=False):

Test whether each element of a 1-D array is also present in a second array.

Returns a boolean array the same length as ar1 that is True where an element of ar1 is in ar2 and False otherwise.

We recommend using isin instead of in1d for new code.

Parameters

ar1 : (M,) array_like
Input array.
ar2 : array_like
The values against which to test each value of ar1.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.
invert : bool, optional

If True, the values in the returned array are inverted (that is, False where an element of ar1 is in ar2 and True otherwise). Default is False. np.in1d(a, b, invert=True) is equivalent to (but is faster than) np.invert(in1d(a, b)).

New in version 1.8.0.

Returns

in1d : (M,) ndarray, bool
The values ar1[in1d] are in ar2.

See Also

isin : Version of this function that preserves the
shape of ar1.
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Notes

in1d can be considered as an element-wise function version of the python keyword in, for 1-D sequences. in1d(a, b) is roughly equivalent to np.array([item in b for item in a]). However, this idea fails if ar2 is a set, or similar (non-sequence) container: As ar2 is converted to an array, in those cases asarray(ar2) is an object array rather than the expected array of contained values.

New in version 1.4.0.

Examples

>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([ True, False,  True, False,  True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False,  True, False,  True, False])
>>> test[mask]
array([1, 5])
@array_function_dispatch(_intersect1d_dispatcher)
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):

Find the intersection of two arrays.

Return the sorted, unique values that are in both of the input arrays.

Parameters

ar1, ar2 : array_like
Input arrays. Will be flattened if not already 1D.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which can speed up the calculation. If True but ar1 or ar2 are not unique, incorrect results and out-of-bounds indices could result. Default is False.
return_indices : bool

If True, the indices which correspond to the intersection of the two arrays are returned. The first instance of a value is used if there are multiple. Default is False.

New in version 1.15.0.

Returns

intersect1d : ndarray
Sorted 1D array of common and unique elements.
comm1 : ndarray
The indices of the first occurrences of the common values in ar1. Only provided if return_indices is True.
comm2 : ndarray
The indices of the first occurrences of the common values in ar2. Only provided if return_indices is True.

See Also

numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples

>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

To intersect more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])

To return the indices of the values common to the input arrays along with the intersected values:

>>> x = np.array([1, 1, 2, 3, 4])
>>> y = np.array([2, 1, 4, 6])
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
>>> x_ind, y_ind
(array([0, 2, 4]), array([1, 0, 2]))
>>> xy, x[x_ind], y[y_ind]
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
@array_function_dispatch(_isin_dispatcher)
def isin(element, test_elements, assume_unique=False, invert=False):

Calculates element in test_elements, broadcasting over element only. Returns a boolean array of the same shape as element that is True where an element of element is in test_elements and False otherwise.

Parameters

element : array_like
Input array.
test_elements : array_like
The values against which to test each value of element. This argument is flattened if it is an array or array_like. See notes for behavior with non-array-like parameters.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.
invert : bool, optional
If True, the values in the returned array are inverted, as if calculating element not in test_elements. Default is False. np.isin(a, b, invert=True) is equivalent to (but faster than) np.invert(np.isin(a, b)).

Returns

isin : ndarray, bool
Has the same shape as element. The values element[isin] are in test_elements.

See Also

in1d : Flattened version of this function. numpy.lib.arraysetops : Module with a number of other functions for

performing set operations on arrays.

Notes

isin is an element-wise function version of the python keyword in. isin(a, b) is roughly equivalent to np.array([item in b for item in a]) if a and b are 1-D sequences.

element and test_elements are converted to arrays if they are not already. If test_elements is a set (or other non-sequence collection) it will be converted to an object array with one element, rather than an array of the values contained in test_elements. This is a consequence of the array constructor's way of handling non-sequence collections. Converting the set to a list usually gives the desired behavior.

New in version 1.13.0.

Examples

>>> element = 2*np.arange(4).reshape((2, 2))
>>> element
array([[0, 2],
       [4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
array([[False,  True],
       [ True, False]])
>>> element[mask]
array([2, 4])

The indices of the matched values can be obtained with nonzero:

>>> np.nonzero(mask)
(array([0, 1]), array([1, 0]))

The test can also be inverted:

>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
       [False,  True]])
>>> element[mask]
array([0, 6])

Because of how array handles sets, the following does not work as expected:

>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[False, False],
       [False, False]])

Casting the set to a list gives the expected result:

>>> np.isin(element, list(test_set))
array([[False,  True],
       [ True, False]])
@array_function_dispatch(_setdiff1d_dispatcher)
def setdiff1d(ar1, ar2, assume_unique=False):

Find the set difference of two arrays.

Return the unique values in ar1 that are not in ar2.

Parameters

ar1 : array_like
Input array.
ar2 : array_like
Input comparison array.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.

Returns

setdiff1d : ndarray
1D array of values in ar1 that are not in ar2. The result is sorted when assume_unique=False, but otherwise only sorted if the input is sorted.

See Also

numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])
@array_function_dispatch(_setxor1d_dispatcher)
def setxor1d(ar1, ar2, assume_unique=False):

Find the set exclusive-or of two arrays.

Return the sorted, unique values that are in only one (not both) of the input arrays.

Parameters

ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False.

Returns

setxor1d : ndarray
Sorted 1D array of unique values that are in only one of the input arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])
@array_function_dispatch(_union1d_dispatcher)
def union1d(ar1, ar2):

Find the union of two arrays.

Return the unique, sorted array of values that are in either of the two input arrays.

Parameters

ar1, ar2 : array_like
Input arrays. They are flattened if they are not already 1D.

Returns

union1d : ndarray
Unique, sorted union of the input arrays.

See Also

numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples

>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1,  0,  1,  2])

To find the union of more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])
@array_function_dispatch(_unique_dispatcher)
def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None):

Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements:

  • the indices of the input array that give the unique values
  • the indices of the unique array that reconstruct the input array
  • the number of times each unique value comes up in the input array

Parameters

ar : array_like
Input array. Unless axis is specified, this will be flattened if it is not already 1-D.
return_index : bool, optional
If True, also return the indices of ar (along the specified axis, if provided, or in the flattened array) that result in the unique array.
return_inverse : bool, optional
If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct ar.
return_counts : bool, optional

If True, also return the number of times each unique item appears in ar.

New in version 1.9.0.
axis : int or None, optional

The axis to operate on. If None, ar will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. Object arrays or structured arrays that contain objects are not supported if the axis kwarg is used. The default is None.

New in version 1.13.0.

Returns

unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if return_index is True.
unique_inverse : ndarray, optional
The indices to reconstruct the original array from the unique array. Only provided if return_inverse is True.
unique_counts : ndarray, optional

The number of times each of the unique values comes up in the original array. Only provided if return_counts is True.

New in version 1.9.0.

See Also

numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

repeat : Repeat elements of an array.

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array (move the axis to the first dimension to keep the order of the other axes) and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the unique rows of a 2D array

>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'], dtype='<U1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'], dtype='<U1')

Reconstruct the input array from the unique values and inverse:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

Reconstruct the input values from the unique values and counts:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> values, counts = np.unique(a, return_counts=True)
>>> values
array([1, 2, 3, 4, 6])
>>> counts
array([1, 3, 1, 1, 1])
>>> np.repeat(values, counts)
array([1, 2, 2, 2, 3, 4, 6])    # original order not preserved