class vectorize:
Generalized function class.
Define a vectorized function which takes a nested sequence of objects or
numpy arrays as inputs and returns a single numpy array or a tuple of numpy
arrays. The vectorized function evaluates pyfunc
over successive tuples
of the input arrays like the python map function, except it uses the
broadcasting rules of numpy.
The data type of the output of vectorized
is determined by calling
the function with the first element of the input. This can be avoided
by specifying the otypes
argument.
Set of strings or integers representing the positional or keyword
arguments for which the function will not be vectorized. These will be
passed directly to pyfunc
unmodified.
If True
, then cache the first function call that determines the number
of outputs if otypes
is not provided.
Generalized universal function signature, e.g., (m,n),(n)->(m) for vectorized matrix-vector multiplication. If provided, pyfunc will be called with (and expected to return) arrays with shapes given by the size of corresponding core dimensions. By default, pyfunc is assumed to take scalars as input and output.
frompyfunc : Takes an arbitrary Python function and returns a ufunc
The vectorize
function is provided primarily for convenience, not for
performance. The implementation is essentially a for loop.
If otypes
is not specified, then a call to the function with the
first argument will be used to determine the number of outputs. The
results of this call will be cached if cache
is True
to prevent
calling the function twice. However, to implement the cache, the
original function must be wrapped which will slow down subsequent
calls, so only do this if your function is expensive.
The new keyword argument interface and excluded
argument support
further degrades performance.
[1] | :doc:`/reference/c-api/generalized-ufuncs` |
>>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b
>>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2])
The docstring is taken from the input function to vectorize
unless it
is specified:
>>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`'
The output type is determined by evaluating the first element of the input, unless it is specified:
>>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <class 'numpy.int64'> >>> vfunc = np.vectorize(myfunc, otypes=[float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <class 'numpy.float64'>
The excluded
argument can be used to prevent vectorizing over certain
arguments. This can be useful for array-like arguments of a fixed length
such as the coefficients for a polynomial as in polyval
:
>>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6])
Positional arguments may also be excluded by specifying their position:
>>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6])
The signature
argument allows for vectorizing functions that act on
non-scalar arrays of fixed length. For example, you can use it for a
vectorized calculation of Pearson correlation coefficient and its p-value:
>>> import scipy.stats >>> pearsonr = np.vectorize(scipy.stats.pearsonr, ... signature='(n),(n)->(),()') >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]]) (array([ 1., -1.]), array([ 0., 0.]))
Or for a vectorized convolution:
>>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)') >>> convolve(np.eye(4), [1, 2, 1]) array([[1., 2., 1., 0., 0., 0.], [0., 1., 2., 1., 0., 0.], [0., 0., 1., 2., 1., 0.], [0., 0., 0., 1., 2., 1.]])
Method | __call__ |
Return arrays with the results of pyfunc broadcast (vectorized) over args and kwargs not in excluded . |
Method | __init__ |
Undocumented |
Method | _get_ufunc_and_otypes |
Return (ufunc, otypes). |
Method | _vectorize_call |
Vectorized call to func over positional args . |
Method | _vectorize_call_with_signature |
Vectorized call over positional arguments with a signature. |
Instance Variable | _in_and_out_core_dims |
Undocumented |
Instance Variable | _ufunc |
Undocumented |
Instance Variable | cache |
Undocumented |
Instance Variable | excluded |
Undocumented |
Instance Variable | otypes |
Undocumented |
Instance Variable | pyfunc |
Undocumented |
Instance Variable | signature |
Undocumented |