Variable | array_function_dispatch |
Undocumented |
Variable | array_precision |
Undocumented |
Variable | array_type |
Undocumented |
Function | _asfarray_dispatcher |
Undocumented |
Function | _asscalar_dispatcher |
Undocumented |
Function | _common_type_dispatcher |
Undocumented |
Function | _getmaxmin |
Undocumented |
Function | _imag_dispatcher |
Undocumented |
Function | _is_type_dispatcher |
Undocumented |
Function | _nan_to_num_dispatcher |
Undocumented |
Function | _real_dispatcher |
Undocumented |
Function | _real_if_close_dispatcher |
Undocumented |
Function | asfarray |
Return an array converted to a float type. |
Function | asscalar |
Convert an array of size 1 to its scalar equivalent. |
Function | common_type |
Return a scalar type which is common to the input arrays. |
Function | imag |
Return the imaginary part of the complex argument. |
Function | iscomplex |
Returns a bool array, where True if input element is complex. |
Function | iscomplexobj |
Check for a complex type or an array of complex numbers. |
Function | isreal |
Returns a bool array, where True if input element is real. |
Function | isrealobj |
Return True if x is a not complex type or an array of complex numbers. |
Function | mintypecode |
Return the character for the minimum-size type to which given types can be safely cast. |
Function | nan_to_num |
Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by the user using the nan , posinf and/or neginf keywords. |
Function | real |
Return the real part of the complex argument. |
Function | real_if_close |
If input is complex with all imaginary parts close to zero, return real parts. |
Function | typename |
Return a description for the given data type code. |
Variable | _namefromtype |
Undocumented |
Variable | _typecodes_by_elsize |
Undocumented |
Return an array converted to a float type.
a
. If dtype
is one of the
'int' dtypes, it is replaced with float64.a
as a float ndarray.>>> np.asfarray([2, 3]) array([2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([2., 3.])
Convert an array of size 1 to its scalar equivalent.
numpy.ndarray.item()
instead.a
. The output data type is the same type
returned by the input's item
method.>>> np.asscalar(np.array([24])) 24
Return a scalar type which is common to the input arrays.
The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype.
All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information.
dtype, mintypecode
>>> np.common_type(np.arange(2, dtype=np.float32)) <class 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <class 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <class 'numpy.complex128'>
Return the imaginary part of the complex argument.
val
is real,
the type of val
is used for the output. If val
has complex
elements, the returned type is float.real, angle, real_if_close
>>> a = np.array([1+2j, 3+4j, 5+6j]) >>> a.imag array([2., 4., 6.]) >>> a.imag = np.array([8, 10, 12]) >>> a array([1. +8.j, 3.+10.j, 5.+12.j]) >>> np.imag(1 + 1j) 1.0
Returns a bool array, where True if input element is complex.
What is tested is whether the input has a non-zero imaginary part, not if the input type is complex.
isreal iscomplexobj : Return True if x is a complex type or an array of complex
numbers.
>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]) array([ True, False, False, False, False, True])
Check for a complex type or an array of complex numbers.
The type of the input is checked, not the value. Even if the input
has an imaginary part equal to zero, iscomplexobj
evaluates to True.
x
is of a complex type or has at least
one complex element.isrealobj, iscomplex
>>> np.iscomplexobj(1) False >>> np.iscomplexobj(1+0j) True >>> np.iscomplexobj([3, 1+0j, True]) True
Returns a bool array, where True if input element is real.
If element has complex type with zero complex part, the return value for that element is True.
x
.isreal
may behave unexpectedly for string or object arrays (see examples)
iscomplex isrealobj : Return True if x is not a complex type.
>>> a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j], dtype=complex) >>> np.isreal(a) array([False, True, True, True, True, False])
The function does not work on string arrays.
>>> a = np.array([2j, "a"], dtype="U") >>> np.isreal(a) # Warns about non-elementwise comparison False
Returns True for all elements in input array of dtype=object even if any of the elements is complex.
>>> a = np.array([1, "2", 3+4j], dtype=object) >>> np.isreal(a) array([ True, True, True])
isreal should not be used with object arrays
>>> a = np.array([1+2j, 2+1j], dtype=object) >>> np.isreal(a) array([ True, True])
Return True if x is a not complex type or an array of complex numbers.
The type of the input is checked, not the value. So even if the input
has an imaginary part equal to zero, isrealobj
evaluates to False
if the data type is complex.
x
is of a complex type.iscomplexobj, isreal
The function is only meant for arrays with numerical values but it accepts all other objects. Since it assumes array input, the return value of other objects may be True.
>>> np.isrealobj('A string') True >>> np.isrealobj(False) True >>> np.isrealobj(None) True
>>> np.isrealobj(1) True >>> np.isrealobj(1+0j) False >>> np.isrealobj([3, 1+0j, True]) False
Return the character for the minimum-size type to which given types can be safely cast.
The returned type character must represent the smallest size dtype such
that an array of the returned type can handle the data from an array of
all types in typechars
(or if typechars
is an array, then its
dtype.char).
typechars
matches a character in typeset
.dtype, sctype2char, maximum_sctype
>>> np.mintypecode(['d', 'f', 'S']) 'd' >>> x = np.array([1.1, 2-3.j]) >>> np.mintypecode(x) 'D'
>>> np.mintypecode('abceh', default='G') 'G'
Replace NaN with zero and infinity with large finite numbers (default
behaviour) or with the numbers defined by the user using the nan
,
posinf
and/or neginf
keywords.
If x
is inexact, NaN is replaced by zero or by the user defined value in
nan
keyword, infinity is replaced by the largest finite floating point
values representable by x.dtype or by the user defined value in
posinf
keyword and -infinity is replaced by the most negative finite
floating point values representable by x.dtype or by the user defined
value in neginf
keyword.
For complex dtypes, the above is applied to each of the real and
imaginary components of x
separately.
If x
is not inexact, then no replacements are made.
Whether to create a copy of x
(True) or to replace values
in-place (False). The in-place operation only occurs if
casting to an array does not require a copy.
Default is True.
Value to be used to fill NaN values. If no value is passed then NaN values will be replaced with 0.0.
Value to be used to fill positive infinity values. If no value is passed then positive infinity values will be replaced with a very large number.
Value to be used to fill negative infinity values. If no value is passed then negative infinity values will be replaced with a very small (or negative) number.
x
, with the non-finite values replaced. If copy
is False, this may
be x
itself.isinf : Shows which elements are positive or negative infinity. isneginf : Shows which elements are negative infinity. isposinf : Shows which elements are positive infinity. isnan : Shows which elements are Not a Number (NaN). isfinite : Shows which elements are finite (not NaN, not infinity)
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity.
>>> np.nan_to_num(np.inf) 1.7976931348623157e+308 >>> np.nan_to_num(-np.inf) -1.7976931348623157e+308 >>> np.nan_to_num(np.nan) 0.0 >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) >>> np.nan_to_num(x) array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary -1.28000000e+002, 1.28000000e+002]) >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, -1.2800000e+02, 1.2800000e+02]) >>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary -1.28000000e+002, 1.28000000e+002]) >>> np.nan_to_num(y) array([ 1.79769313e+308 +0.00000000e+000j, # may vary 0.00000000e+000 +0.00000000e+000j, 0.00000000e+000 +1.79769313e+308j]) >>> np.nan_to_num(y, nan=111111, posinf=222222) array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])
Return the real part of the complex argument.
val
is real, the type
of val
is used for the output. If val
has complex elements, the
returned type is float.real_if_close, imag, angle
>>> a = np.array([1+2j, 3+4j, 5+6j]) >>> a.real array([1., 3., 5.]) >>> a.real = 9 >>> a array([9.+2.j, 9.+4.j, 9.+6.j]) >>> a.real = np.array([9, 8, 7]) >>> a array([9.+2.j, 8.+4.j, 7.+6.j]) >>> np.real(1 + 1j) 1.0
If input is complex with all imaginary parts close to zero, return real parts.
"Close to zero" is defined as tol
* (machine epsilon of the type for
a
).
a
is real, the type of a
is used for the output. If a
has complex elements, the returned type is float.real, imag, angle
Machine epsilon varies from machine to machine and between data types but Python floats on most platforms have a machine epsilon equal to 2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print out the machine epsilon for floats.
>>> np.finfo(float).eps 2.2204460492503131e-16 # may vary
>>> np.real_if_close([2.1 + 4e-14j, 5.2 + 3e-15j], tol=1000) array([2.1, 5.2]) >>> np.real_if_close([2.1 + 4e-13j, 5.2 + 3e-15j], tol=1000) array([2.1+4.e-13j, 5.2 + 3e-15j])
Return a description for the given data type code.
dtype, typecodes
>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q', ... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q'] >>> for typechar in typechars: ... print(typechar, ' : ', np.typename(typechar)) ... S1 : character ? : bool B : unsigned char D : complex double precision G : complex long double precision F : complex single precision I : unsigned integer H : unsigned short L : unsigned long integer O : object Q : unsigned long long integer S : string U : unicode V : void b : signed char d : double precision g : long precision f : single precision i : integer h : short l : long integer q : long long integer